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Equivalence of the Two Results for the Free Energy of
the Chiral Potts Model

R. J. Baxter1, 2
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The free energy of the chiral Potts model has been obtained in two ways. The
first used only the star-triangle relation, symmetries, and invariances, and led to
a system of equations that implicitly define the free energy, and from which the
critical behavior can be obtained The second used the functional relations
derived by Bazhanov and Stroganov, solving them to obtain the free energy
explicitly as a double integral. Here we obtain, for the first time, a direct
verification that the two results are identical at all temperatures.

KEY WORDS: Statistical mechanics; lattice models; chiral Potts model; free
energy.

1. INTRODUCTION

The chiral Potts model is the first model found that satisfies the star-tri-
angle relation but does not have the ``difference property.'' This means that
the model and its properties cannot be simply expressed in terms of elliptic
functions. Its free energy was first investigated by showing that it satisfied
certain partial differential equations.(1) Later an explicit formula was
obtained as a double integral, (2, 3) using the transfer matrix functional rela-
tions derived by Bazhanov and Stroganov(4) and discussed by the author.(5)

These two results were shown to be consistent in the scaling region near
criticality, (6) but their equivalence has not been verified in general. Here we
do this and discuss the properties of the functions xp , yp that play a key
role in ref. 1.

513

0022-4715�00�0200-0513�18.00�0 � 2000 Plenum Publishing Corporation

1 Theoretical Physics, I.A.S., and School of Mathematical Sciences, and The Australian
National University, Canberra, A.C.T. 0200, Australia.

2 This work was performed while the author was a Visiting Miller Professor at the University
of California at Berkeley.



The model is defined in ref. 7. Here we shall consider only the model
on the square lattice, but because of the star-triangle relation correspond-
ing models can also be defined on the triangular and honeycomb lattices.
It is shown in ref. 1 how their free energies can easily be obtained from that
of the square lattice.

Here we use the notation of ref. 1. Let k, k$ be two real numbers,
between 0 and 1, satisfying

k2+k$2=1 (1)

Define variables %p , ,p , up , vp , related to the ap , bp , cp , dp of ref. 7 and to
one another by

ei%p=e&?i�Nbp �cp , ei,p=ap �dp
(2)

up=N(%p+,p)�2, vp=N(%p&,p)�2

Then from Eq. (9) of ref. 7, up and vp are related by

sin vp=k sin up (3)

Thus if the constant k is given, then any one of the parameters
%p , ,p , up , vp specifies the other three, to within multiple, but discrete,
values. Here we shall regard up as the primary (real) variable, and usually
confine it to the interval

0<up<? (4)

Then there is a unique choice for vp such that it is real, satisfying

&?�2<vp<?�2 (5)

The parameters %p , ,p are then uniquely defined by (2).
We also define a function

T(%, n)=_cos
N%
2 &

&n�N

`
n

j=1

sin _&
%
2

+
?(2j&1)

2N & (6)

Consider a square lattice of L sites. At each site i there is a ``spin'' _i

which takes values 0, 1,..., N&1. Adjacent horizontal sites i, j (with j to the
right of i) interact with Boltzmann weight function Wpq(_i&_ j), and
adjacent vertical sites i, j ( j above i) with Boltzmann weight function
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W� pq(_i&_j). The functions W, W� are defined (to within normalization
factors) by

Wpq(n)�Wpq(0)=T(%q&,p , n)�T(%p&,q , n)
(7)

W� pq(n)�W� pq(0)=T(,p&,q+`, n)�T(%q&%p&`, n)

where

`=?�N (8)

The above relations ensure that the weight functions are periodic of period
N : Wpq(n+N)=Wpq(n), W� pq(n+N)=W� pq(n).

Define

\pq={ `
N&1

n=0

Wpq(n)=
1�N

(9)

2pq=[detN W� pq(i& j)]1�N

i.e., 2N
pq is the determinant of the cyclic N by N matrix with entry W� pq(i& j)

in position (i, j).
Let Z be the partition function of the model. Then from (2.16), (3.22)

and (3.42) of ref. 1, the partition function per site is

Z1�L=\pq 2pqe&4pq (10)

so 4pq is the dimensionless free energy per site in the normalization in
which \pq , 2pq are both one. This is the function 4pq of ref. 1.

Now we consider the result (21) of ref. 2. There we used the normaliza-
tion \pq=2pq=1, and V(tq , *q)1�L is the partition function per site, so the
lhs of (21) is &4N4pq .

We do need to reconcile the notations. The variables up , uq of ref. 2 are
the same as those above, except that they lie in the interval &?<up ,
uq<&?�2. We replace them by up&?, uq&? (and negate vp , vq). This is
equivalent to replacing the rapidities p, q by R&1p, R&1q, which in turn is
equivalent to merely rotating the lattice through 180%, so does not change
the free energy, but does ensure that the new up , uq each lie in the interval
(4), so we can directly compare the result of ref. 2 with the equations of
ref. 1.
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Making these substitutions, Eq. (21) of ref. 2 gives, for 0<up , uq<?�2,

4pq=({�2) log(Jq �Jp)

&P |
�

&�
e2;(uq&up)�?[s(;)[Gp(;) Gq(&;)+cosech2 ;]

+t(;)[Gp(;)+Gq(&;)]] d; (11)

where P denotes the principal-value integral,

{=(N&1)�(2N)

Jp=[1+k2+2k cos(up+vp)]�k$2=sin2 (up+vp)�(k$2 sin2 up) (12)

s(;)=[N sinh ; cosh(N&1) ;&sinh N;]�[4N; sinh N;] (13)

t(;)=sinh(N&1); �[4; sinh N;]

and

Gp(;)=
cos vp

? |
�

&�

e&;+2;(up+ix)�? dx
sin(up+ix)(1+k2 sinh2 x)1�2 (14)

Note that negating x is equivalent to complex conjugating the integrand in
(14), so Gp(;) is a real function. Its value at ;=0 is

Gp(0)=1&2vp �? (15)

In fact the integrals are convergent provided 0<up , uq<?, so (11)
should hold throughout this larger domain, each side being analytic in
up , uq . For up<uq the Boltzmann weights are real and positive and 4pq is
the true free energy. For up>uq it is its analytic continuation. By negating
; it is easily seen that 4qp=&4pq , in agreement with (3.40)�(3.42) of ref. 1:
this is the ``inversion relation.''

2. DERIVATIVES OF Gp(;)

The essential point of the method of ref. 1 is that (because of the star-
triangle relation and the fact that Wpq(n), W� pq(n) each depend on only two
parameters, rather than three) certain derivatives of 4pq can be expressed
in terms of ``single-rapidity'' functions that depend on only up or uq , but
not both. (They also depend on k.) We now show that this follows directly
from (11).

516 Baxter



To differentiate Gp(;) with respect to up , keeping k fixed, first change
the integration variable to y, where x= y+iup . Then differentiate, using
(3), and then change back to x as the integration variable. The result is
that the derivative of Gp(;) is equal to the rhs of (14), but with an extra
factor in the integrand:

&
k2 sin up cos up

cos2 vp
&

ik2 sinh x cosh x
1+k2 sinh2 x

(The first term comes from differentiating cos vp , the second from differen-
tiating the integrand.)

Expanding, this factor becomes

&
k2 sin(up+ix)[cos up cosh x+ik$2 sin up sinh x]

cos2 vp(1+k2 sinh2 x)
(16)

We see that sin(up+ix) appears in the numerator. This cancels the
same term in the denominator in (14), leaving

�
�up

Gp(;)=&
k2e&;+2;up�?

cos vp
[cos up A(;)&k$2 sin upB(;)] (17)

where

A(;)=
1
? |

�

&�

cos(2;x�?) cosh x dx
(1+k2 sinh2 x)3�2

(18)

B(;)=
1
? |

�

&�

sin(2;x�?) sinh x dx
(1+k2 sinh2 x)3�2

We can also differentiate Gp(;) with respect to k, keeping up fixed.
This time the extra factor in the integrand is

&
k sin2 up

cos2 vp
&

k sinh2 x
1+k2 sinh2 x

=&
k sin(up+ix) sin(up&ix)

cos2 vp(1+k2 sinh2 x)

Again sin(up+ix) appears in the numerator, so cancels out of the full
integrand, leaving

�
�k

Gp(;)=&
ke&;+2;up�?

cos vp
[sin up A(;)+cos upB(;)] (19)
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Note that A(;), B(;) are independent of up . Although the rapidity
parameter up is locked into the integral expression (14) for Gp(;), it can be
taken outside the integrals occurring in the derivatives of Gp(;). This is the
key to this calculation: indeed, most of what we do from now on is merely
elementary differentiation and straightforward (if cumbersome) algebraic
manipulation.

3. DERIVATIVES OF 4pq

First differentiate 4pq with respect to k, keeping up and uq fixed. Noting
that

�
�k

log Jp=2 cos up �(k$2 cos vp)

and using (19), we obtain

�
�k

4pq=
lp sin uq+mp cos uq&lq sin up&mq cos up

k cos vp cos vq
(20)

where

lp=k2Lp cos vp , mp={(k�k$2) cos vp&k2Mp cos vp (21)

Lp , Mp being the integrals

Lp=P |
�

&�
e;&2;up�?[s(;) Gp(;)+t(;)] A(;) d;

Mp=|
�

&�
e;&2;up�?[s(;) Gp(;)+t(;)] B(;) d;

Secondly, differentiating 4pq with respect to up , uq and summing,
noting that

�
�up

log Jp=&
2k sin up

cos vp

we obtain

\ �
�up

+
�

�uq+ 4pq=
lp cos uq&k$2mp sin uq&lq cos up+k$2mq sin up

cos vp cos vq
(23)
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The contributions of the term ({�2) log(Jq �Jp) have been incorporated
into mp .

Now define functions xp , yp so that

lp=(=&xp) cos up+k$2yp sin up , mp=(=&xp) sin up& yp cos up (24)

Here = is a ``constant''��independent of up but dependent on k. It is
included with xp for later convenience.

Solving these equations for xp , yp gives

xp==&(lp cos up+k$2mp sin up)�cos2 vp
(25)

yp=(lp sin up&mp cos up)�cos2 vp

while substituting them into (20), (23) gives

�
�k

4pq=
sin(up+uq)(xq&xp)+cpq( yq& yp)

k cos vp cos vq
(26)

\ �
�up

+
�

�uq+ 4pq=
cpq(xq&xp)&k$2 sin(up+uq)( yq& yp)

cos vp cos vq
(27)

where

cpq=cos up cos uq&k$2 sin up sin uq

These are precisely the equations (3.45), (3.46) of ref. 1, so we have
verified that the double integral expression obtained in ref. 2 has derivatives
of this form, and have (for the first time) obtained explicit expressions for
the single-rapidity functions xp, yp in ref. 1.

Note that these functions xp , yp are not to be confused with the simple
ratios ap �dp , bp �cp of the original rapidity parameters, (7) elsewhere referred
to as xp , yp .

We shall find it helpful to regard Gp(;),..., xp , yp as functions
G(up , ;),..., x(up), y(up) of the variable up , defining cos vp as the positive
square root of (1&k2 sin2 up) for up real. The functions are defined by the
above integrals for 0<up<?. Outside this interval and in the vicinity of
the real axis they are defined by analytic continuation.

From now on we drop the suffix p and regard u as an independent
variable; v is a dependent variable defined by (3), in particular cos v=
- (1&k2 sin2 u). We refer to quantities that are independent of u as ``con-
stants:'' they may still (and usually do) depend on k.
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With these definitions, G(u, ;),..., x(u), y(u) are real analytic functions
of u for u real. In the complex plane they have branch points at

u=(n&1�2) ?\cosh&1 (1�k) (28)

for all integers n.
Note that the function G(u, ;) of this paper is not the function G(u) of

ref. 1. Nor should the function x=xp be confused with the integration
variable x in (14)�(19).

4. DIFFERENTIAL EQUATIONS FOR x, y

An essential step in the working of ref. 1 was the derivation of the pair
of coupled partial differentiation equations (4.12) for x(u) and y(u):

2x+\�y
�u

&k
�x
�k+ cos2 v=:&(:+$) sin2 u

(29)

&k2x sin 2u+\�x
�u

+kk$2 �y
�k

&2y+ cos2 v=
1
2

(k$2:+$) sin 2u+' cos2 v

Here :, $, ' are unknown constants. (This ' is the ; of ref. 1.)
Much of ref. 1 is concerned with evaluating these constants, but we

can now obtain explicit expressions for them. Using (21)�(25) to express
x, y in terms of L, M, and ignoring for the moment the contribution of the
constant term = in the definition of x(u), we find that the left-hand sides of
the two equations (29) are, respectively,

k2(R cos u+S sin u) cos v, k2(k$2R sin u&S cos u) cos v

where

R=L+k
�L
�k

+
�M
�u

(30)

S=
�L
�u

+(3k2&1) M&kk$2 �M
�k

From the definitions (18) we can establish

A(;)+k
�A(;)

�k
&2;B(;)�?=0

(31)

&2;A(;)�?+(3k2&1) B(;)&kk$2 �B(;)
�k

=0
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Substituting the definitions (22) of L(u) and M(u) into (30), and noting
that s(;), t(;) are independent of both u and k, it follows that the only
contributions to R and S come from the derivatives of G(u, ;). Using (17)
and (19), we obtain

R=k2V cos u�cos v, S=k2k$2V sin u�cos v (32)

where

V=2 |
�

&�
s(;) A(;) B(;) d; (33)

(There are also terms involving the integrals of s(;) A2(;) and s(;) B2(;),
but these have odd integrands, so vanish.) Hence the left-hand sides of (29)
are

k4V[&1+(2&k2) sin2 u], &k4k$2V sin 2u

respectively. These are indeed of the same form as the rhs, and at this stage
:, $, ' have the values &k4V, &k4k$2V, 0, respectively.

We are still not quite in a position to directly compare our results with
ref. 1. There it was pointed out that that one can add arbitrary constants
to x(u) and y(u) without changing (26), (27), and this freedom was used
to ensure that '=0 and :+$=0. We already have '=0, which means
we do not have to adjust y(u). We do have to adjust x(u): we can do
this by a suitable choice of =, which parameter gives contributions
2=&k cos2 v d=�dk, &k2= sin 2u to the left-hand sides of (29), and hence
contributions 2=&k d=�dk, &2=+kk$2 d=�dk, 0 to :, $ and '. Altogether we
therefore have

:+$=&k4V&k4k$2V&k3 d=�dk (34)

so to make :+$=0 we choose

d=�dk=&k(1+k$2) V (35)

If we define

X=(?k2�2) |
�

&�
;&1s(;) A2(;) d;

(36)

Y=(?k2k$4�2) |
�

&�
;&1s(;) B2(;) d;
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then from (31) ave can verify that

dX
dk

=kV,
dY
dk

=&kk$2V (37)

so we can take

==Y&X (38)

This choice ensures that

lim
u � \�

x(u)=0 (39)

and the final adjusted values of the constants in (29) are

:=&$=2[k2k$2V+Y&X], '=0 (40)

The constant * that figures prominently in ref. 1 is

*=&
k$
k

d
dk \

k$:
k2 + (41)

5. PROPERTIES OF THE FUNCTIONS

Periodicity

We should perform what checks we can to see if the functions
x(u), y(u) have the properties used in ref. 1. Here we investigate their peri-
odicity relations under the mapping u � u+?. Here up and u are the same
variable.

First we have to analytically continue G(u, ;). As up is increased
beyond ? in (14), the contour of integration has to shifted above the real
axis so as to remain above the pole at x=i(up&?). The effect is the same
as leaving the contour on the real axis but adding the contribution from all
small circle, traversed clockwise, round this pole. This contribution is e;.

Thus for ?<u<2?, G(u, ;) is defined by (14), but with an additional
term e; on the rhs. It follows that for 0<u<?,

G(u+?, ;)=&e2;G(u, ;)+2e; (42)

Similarly writing Lp , Mp and L(up), M(up), and noting that

s(;)+t(;) cosh ;={�(2;) (43)
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it follows from (22) that

L(u)+L(u+?)={P |
�

&�
e&2;u�?;&1A(;) d;

(44)

M(u)+M(u+?)={ |
�

&�
e&2;u�?;&1B(;) d;

The factors cos(2;x�?), sin(2;x�?) in (18) can be written as the real
and imaginary parts of exp(2i;x�?). Doing this, substituting the resulting
expressions for A(;), B(;) into (44), differentiating with respect to u or
integrating by parts in the expression for B(;), we can arrange that the ;
integration gives a delta function. The x integration can then be performed
immediately, giving

L(u)+L(u+?)=&2{ sin u�cos v
(45)

M(u)+M(u+?)=
2{
k$2 _1

k
&

cos u
cos v&

It follows that

l(u)+l(u+?)=&2{k2 sin u
(46)

m(u)+m(u+?)=2{(k2�k$2) cos u

and

x(u+?)=x(u), y(u+?)= y(u)+2{k2�k$2 (47)

Thus x, dy�du are strictly periodic functions of u, of period ?.
We have derived these periodicity relations for 0<u<?, but by

analytic continuation they must be true for all real u.

Evenness�Oddness

We can replace up in (14) by ?&up without leaving the domain of
validity of the equation. Doing so, then negating x, we obtain

G(?&u, ;)=G(u, &;) (48)
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from which it follows that M(u), m(u), x(u) are unchanged by replacing u
by ?&u, while L(u), l(u), y(u) are negated. Using the above periodicity
relations, we obtain

x(&u)=x(u), y(&u)+ y(u)=&2{k2�k$2 (49)

Thus x(u) is an even function, y(u)+{k2�k$2 is odd.
The above periodicity and evenness�oddness properties agree with

those given in Eqs. (5.3), (5.4), (6.9) of ref. 1.

Convergence and Analyticity of the Integral (11)

From (14), deforming the contour of integration as necessary,
Gp(;)�cos vp is an analytic function of up throughout the vertical strip
&?�2<Re up<3?�2. It can also be analytically continued along the real
axis, using (42).

Its dominant behaviour for ; large is given by the closest singularity
to the real axis in the appropriate half x-plane. We find that as ; � +�

Gp(;)te&; if Re up<?�2

te&2;+2;up�? if Re up>?�2

while as ; � &�

Gp(;)te2;up�? if Re up<?�2

te ; if Re up>?�2

Using these formulae in (11), we find that the integrals converge
provided that up , uq lie in the domain D defined by &?<Re(uq&up)<?,
&?�2<Re up<3?�2 and &?�2<Re uq<3?�2.

It follows that the integral in (11) is an analytic function of up and uq

in D, except for an elementary two-valuedness due simply to the factors
cos vp , cos vq in Gp(;) and Gq(&;), with branch points when sin up=
\k&1, sin uq=\k&1. These lie on the lines Re vp=?�2 and Re vq=?�2.

6. THE LOW-TEMPERATURE LIMIT k � 1

When k � 1, the branch points (28) pinch onto the real axis and the
functions have discontinuities in their derivatives at u=(n&1�2) ?. If
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&?�2<u<?�2, then cos v=cos u and (analytically continuing from
0<u<?�2) we obtain

G(u, ;)=[1&e&;+2;up�?]�sinh ;

A(;)=2;�(? sinh ;), B(;)=2;2�(?2 sinh ;)

We also find that the constants =, X, Y are

==&X=&
1

2N 2 :
N&1

j=1

(N&2j) cot(?j�N ), Y=0

Evaluating L(u), l(u), k$2m(u), using the identity

tan u=
1
N

:
N

j=1

cot
( j&1�2) ?&u

N
(50)

we find that

x(u)=
1

2N 2 :
N

j=1

(2j&N&1) cot
( j&1�2) ?&u

N
, y(u)=&{�k$2 (51)

For ?�2<u<3?�2 we note that cos v is then &cos u. Some of the
terms in the above working are then negated and we obtain

x(u)=
1

2N 2 :
N+1

j=2

(2j&N&3) cot
( j&1�2) ?&u

N
, y(u)={�k$2 (52)

These results are consistent with the above periodicity and evenness
properties. Equations (3.25b) and (5.2) of ref. 1 are in error in that the rhs
of both should be divided by 2. With this correction, (5.2) and (4.13)
therein are consistent with (51)

For &?�2<u<?�2, we can also write (51) as

x(u)=&(2N cos u)&1 :
N&1

r=1

cos(u&2ru�N )
sin(?r�N )

(53)

from which we can verify that Eq. (5.12) of ref. 1 is correct as written.
Fortunately it is this equation that is subsequently used in ref. 1, rather
than (3.25b) or (5.2), so there is no reason to doubt the results of that
paper.

525Equivalence of Results for Free Energy of the Chiral Potts Model



In this limit we can verify that

*=2= (54)

in agreement with (5.25) of ref. 1.

7. THE CRITICAL CASE: k � 0

When k � 0 the model becomes critical. To investigate the behaviour
in this limit it is helpful to note that A(;) and B(;) can be expressed in
terms of hypergeometric functions. Let

J(m, n)=|
�

&�

e2imx dx
(1+k2 sinh2 x)n , k=1�cosh % (55)

Then, taking % to be real, we can establish that

J(m, n)= 1
2e2im% (1+e2%)2n B(n+im, n&im) F(n+im, n; 2n; 1&e4%) (56)

provided n is real and positive and |Im(m)|<n. Here B(m, n)=1 (m) 1 (n)�
1 (m+n) is the beta function and F(:, ;; #; z) is the usual hypergeometric
function. We can use standard transformation formulae (9.131 of ref. 8) to
verify that the rhs of (56) is unchanged by negating either m or %.

Using formula (9.131.2) of ref. 8, it follows that in the limit when k � 0
and % � +�,

J(m, n) � 1
2[e2im%1 (n&im) 1 (im)+e&2im%1 (n+im) 1 (&im)]�1 (n) (57)

(neglecting terms of relative order e&2% or smaller).
The functions A(;), B(;) defined in (18) can be written as sums and

differences of functions J(m, 3�2). Define

c+(;)=?&3�21 (1+i;�?) 1 ( 1
2&i;�?),

(58)
c&(;)=?&3�21 (1&i;�?) 1 ( 1

2+i;�?)

Then we find that

A(;)=k&1[e&2i;%�?c+(;)+e2i;%�?c&(;)]
(59)

B(;)=k&1[ie&2i;%�?c+(;)&ie2i;%�?c&(;)]

For N=2, we see from (13) that s(;)=0, so =, :, * are zero. For
N>2, using (36), (38) we can write = as an integral over a quadratic form
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in A(;), B(;). Substituting the forms (59), the explicit k factors cancel, we
obtain terms proportional to e&4i;%�? and e4i;%�?, and cross terms where
such exponentials have cancelled out. To leading order (for k small) the
cross terms cancel, so their contribution to = is at most of order k2. The
other two terms differ only by negating ;, so each give the same contribu-
tion to : and we obtain

==&2? |
�

&�
s(;) e4i;%�?;&1[c&(;)]2 d; (60)

We shall also need :: this is of the same form as =, but with an extra factor
(2+4i;�?) in the integrand.

The integrand in (60) is is an analytic function of ; on the real axis.
The nearest singularity in the upper half-plane is a pole at ;=i?�N, coming
from s(;), so in the limit of % large, we can close round the upper half
plane and the results will be dominated by the contribution from this pole.
The residue of s(;) is (1�8?) sin 2?�N, so we obtain

==&rk4�N�(N&2), :=&2rk4�N�N (61)

where (using standard formulae for the Gamma function)

r=(2?3)&1 2&4�NN(N&2) 1 2 \1+
1
N+ 1 2 \1

2
&

1
N+ sin(2?�N )

=(N&2) tan(?�N ) 1 4(1�N )�[4?2N1 2(2�N )] (62)

Hence from (41), to leading order (for N>2),

*=&4(N&2) rk4(1&N )�N�N 2 (63)

in agreement with Eqs. (6.2)�(6.4) of ref. 1.
From (17) and (19), neglecting terms of relative order k2,

G(u, ;)=sech ;&ike&;+2;u�?[e&iu&2i;%�?(1+2i;�?)&1 c+(;)

&eiu+2i;%�?(1&2i;�?)&1 c&(;)] (64)

Now consider the functions L(u), M(u) defined by (22) as integrals over ;.
Substituting the above forms of A(;), B(;), G(u, ;), we obtain three
distinct contributions.

(i) Terms coming from the sech ; component of G(u, ;). Using (43),
these correspond to replacing s(;) Gp(;)+t(;) in (22) by {�(2; cosh ;).
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Their only dependence on N is via the external factor {, i.e., they are
proportional to (N&1)�N. Using (59), taking the ;-integral to be principal-
valued, and negating ; in the terms involving c+(;), the integrand contains
a factor e2i;%�?. We can close round the upper half-plane and in the limit
% � +� the dominant contributions are from a possible simple pole at ;=0
and a double pole at ;=?�2. The first gives contributions 0, {�k to L(u),
M(u), respectively��these cancel the {(k�k$2) cos v term in (21). The second
gives contributions (d1+2{%�?) cos u&{(1&2u�?) sin u, &(d1+2{%�?)
sin u&{(1&2u�?) cos u, where d1 is independent of both u and k.

(ii) Cross terms. The soother contributions come from the terms in
(64) involving c+(;), c&(;). They contain s(;) as a factor in the integrand,
so only occur for N>2. Using (59), they can naturally be grouped into three
terms: those proportional to e&4i;%�?c+(;)2, c+(;)2, c+(;) c&(;), and
e4i;%�?c&(;)2. The middle terms are cross terms independent of % and k, and
give contributions d2 cos u, &d2 sin u, to L(u), M(u), respectively, where d2 ,
like d1 , is independent of both u and k.

(iii) Terms proportional to fractional powers of k. Finally there are
the first and third terms mentioned in (ii). We negate the variable ; in the
first term, which puts it into a form similar to the third. The resulting
integral can be closed round the upper half ; plane. There is no pole at the
origin and the nearest pole to the real axis is a simple pole of s(;) at
;=i?�N. The calculation is now very similar to that of =: evaluating the
residue we find that the combined contribution of these terms to L(u), M(u)
is &rk4�N(N 2&4)&1 cos u, &rk4�N(N 2&4)&1 sin u, respectively.

Substituting these various contributions into (21) and (25) and work-
ing to order k2 log k in terms in x(u) that are independent of u, to order
k2+4�N in other terms, we obtain

x(u)=2?&1{k2 log(k�2)&
rk4�N

N&2
+

rk2+4�N cos 2u
N 2&4

(65)

y(u)=&{(1&2u�?) k2&
rk2+4�N sin 2u

N 2&4

These results agree with (and slightly extend) Eqs. (6.6), (6.8) of ref. 1.

The Scaling Region

In an earlier paper(6) we obtained the free energy and the functions
*, x(u), y(u) in the scaling region near k=0, considerably extending the
above results in a series expansion in powers of k4�N. We do not with to
fully re-derive these results here, but note that if we include not just the
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contributions discussed above from poles at ;=i?�N, but more generally at
;=ij?�N, where j=1, 2,..., then

==&: k4j�Nrj �(N&2j), :=&(2�N ) : k4j�Nrj

(66)
*=&(4�N 2) : (N&2j) k4j�N&4rj

where

rj=
N(N&2j)
2?3j 224j�N sin \2?j

N + 1 2 \1+
j

N+ 1 2 \1
2

&
j

N+
=

N&2j
4?2N

tan(?j�N ) 1 4( j�N )�1 2(2j�N ) (67)

The sums are over positive integer values of j and we should restrict j to be
less than N�2, since for greater values the contributions are smaller than
other terms, of relative order k2, that we are ignoring.

Similarly, considering the contributions of such a pole to L(u), M(u),
x(u), y(u), the term rk2+4�N�(N 2&4) above is replaced by jrj k2+4j�N�
(N 2&4j 2) and we obtain

x(u)=2?&1{k2 log(k�2)&
rk4�N

N&2
+:

jrjk2+4j�N cos 2u
N 2&4j 2

(68)

y(u)=&{(1&2u�?) k2&:
jrj k2+4j�N sin 2u

N 2&4j 2

These results agree with Eq. (B2) of ref. 6, and with the relevant H1(k) term
in Eqs. (B5), (B6).

8. THE CASE N=2

When N=2 the model reduces to the Ising model. As remarked above,
the function s(;) then vanishes, causing some simplifications, in particular
==:=*=0. Substituting (18) into (22), performing the ; integration, then
integrating by parts in the x-variable, we obtain, for 0<u<?,

L(u)=
i

4? |
�

&�

sinh x dx
sin(u+ix)(1+k2 sinh2 x)1�2

(69)

M(u)=
1

4kk$2&
1

4?k$2 |
�

&�

cosh x dx
sin(u+ix)(1+k2 sinh2 x)1�2
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Substituting these into (21), (25), the factor sin(u+ix) cancels out of
the expression for x(u), leaving, in agreement with (5.38) of ref. 1,

x(u)=&k2K$�(2? cos v) (70)

where

K$=|
�

0
(1+k2 sinh2 x)&1�2 dx (71)

is the usual complete elliptic integral.
For y(u) we obtain

y(u)=&
k2

4?k$2 cos v |
�

&�

cos u cosh x&ik$2 sin u sinh x

sin(u+ix) - (1+k2 sinh2 x)
dx (72)

To handle this we introduce Jacobi's elliptic functions of modulus k. Define
w, t by

sin u=sn w, cos u=cn w, sinh x=&i sn t, cosh x=cn t (73)

where 0<w<2K and t is pure imaginary. Then (72) becomes

y(u)=
ik2

8?k$2 |
iK$

&iK$
J(w, t) dt (74)

where

J(w, t)=
2(cn w cn t&k$2 sn w sn t)
dn w (sn w cn t+cn w sn t)

By considering the poles and residues of J(w, t) as a function of t, we can
verify that

J(w, t)=\H$
H

+
H$1
H1 +\

w+t
2 ++\3 $

3
+

3 $1
31 +\

w&t
2 +&2

3 $1
31

(w) (75)

where for instance the first bracketted term on the rhs is the sum of the
logarithmic derivatives of the Jacobi theta functions H and H1 , evaluated
with arguments (w+t)�2. We can now integrate J(w, t) directly with
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respect to t (taking care to obtain the correct branches of complex
logarithms), giving

y(u)=
k2

2?k$2 {?(w&K)
2K

+K$
3 $1(w)
31(w)= (76)

It seems that the expression in (5.38) of ref. 1 for y(u) is in error: it should
be multiplied by 2k and the first occurrence of wp replaced by wp&K. When
that is done, it agrees with (76).

We have checked that these N=2 results have the periodicity and eve-
ness�oddness properties discussed above, and are consistent with the k=1
and k � 0 limiting cases.

9. THE INVERSION AND ROTATION RELATIONS

We have already remarked at the end of Section 1 that

4qp=&4pq (77)

and that this is the ``inversion'' relation(9) of the chiral Potts model. Let R
be the automorphism such that uRp=up+?, vRp=&vp . Then, using ref. 7,

Wq, Rp(n)=W� pq(n), W� q, Rp(n)=Wpq(&n) (78)

so replacing p, q by q, Rp is equivalent to merely rotating the lattice through
90%. This leaves the partition function Z is unchanged. From (10) it follows
that

4q, Rp&4pq=log fq, Rp&log fpq (79)

where

fpq=[detN W� pq(i& j)]1�N<{ `
N&1

n=0

W� pq(n)=
1�N

(80)

The aim of this section is to explicitly show that the formula (11) satisfies
(79).

We first need to write fpq (or rather its logarithm) in an appropriate
form. It is given explicitly in Eq. (3.22) of ref. 1. Using (3.33) therein, we can
write it as

fpq=N 1�2(hpq�k$) (N&1)�2N gpq (81)
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where

gpq= `
N&1

j=0

[2 sin[(uq&up+?j)�N]] (2j+1&N)�2N (82)

hpq={cos[N(%p&,q)�2] cos[N(%q&,p)�2]
sin[N(%q&%p)�2] sin[N(,q&,p)�2] =

1�2

If up , uq are real and 0<uq&up<?, then all the Boltzmann weights
Wpq(n), W� pq(n) are real and positive, and so are gpq , hpq . Using the relations
(2), (3), we can write hpq as

hpq=
sin(N%p) cos[N(%q&,p)�2]
k$ sin up sin[N(%q&%p)�2]

(83)

Let us write the variables xp , yp , *p of refs. 2 and 3 as x~ p , y~ p , *p . Then, using
the definition (12) of Jp ,

x~ p=ei,p, y~ p=ei(%p+?�N)

kx~ N
p =1&k$�*p , ky~ N

p =1&k$*p , Jp=*2
pe&2ivp

*p+*&1
p =(1+k$2+k2e2iup)�k$, *p&*&1

p =2(k�k$) e iup cos vp

and

hpq=i(1&*p*q)�(*p&*q) (84)

Using the identity (56) of ref. 3, we can establish that

log gpq=&P |
�

&�
e&;+2;(uq&up)�?[t(;)+s(;) cosh ;�sinh2 ;] d; (85)

provided 0<Re(uq&up)<?.
Consider hpq as a function of up , keeping k and uq fixed. Differentiating

and using the above relations, we obtain

d log hpq

dup
=

cos vq

sin(uq&up) cos vp
(86)

Provided 0<uq<?, it follows that d log hpq�dup is analytic in a vertical
strip in the complex up plane containing the imaginary axis, and tends
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exponentially to zero as up � \i�. It can therefore be Fourier analyzed in
this strip. Doing this and using the definition (14), we find that

d log hpq

dup
=

1
? |

�

&�
e&;+2;(uq&up)�?Gq(&;) d; (87)

provided &?�2<Re up<?�2 and 0<Re(uq&up)<?.
When up � +i�, then vp � +i�, *p � 1�k$ and hpq � i*qe&2ivq. When

up � &i�, then vp � &i�, *p � � and hpq � &i*q . Integrating (87) with
respect to up , it follows that

log hpq=
1
2

log Jq&P |
�

&�

e&;+2;(uq&up)�?

2;
Gq(&;) d; (88)

We have introduced several complex variables, but if up , uq are real and
0<uq&up<?, then we recall that Gq(&;) is a real function, and hpq , Jq

are real and positive: (86), (87), (88) are then real equations. The
additional conditions &?�2<up<?�2, 0<uq<? are needed to ensure
convergence of the integrals as written.

Noting that *Rp=*&1
p , from (82) and (84) we can verify that

gq, Rp=1�gpq , hq, Rp=1�hpq

so from (81)�(88),

log fq, Rp&log fpq=&2 log gpq&2{ log hpq

=&{ log Jq+P |
�

&�
e&;+2;(uq&up)�?Xq(;) d; (89)

where

Xq(;)={;&1Gq(&;)+2t(;)+2s(;) cosh ;�sinh2 ; (90)

Using (43), we can write this last relation as

Xq(;)=2s(;)[Gq(&;)+cosh ;�sinh2 ;]+2t(;)[1+Gq(&;) cosh ;] (91)

We can now explicitly verify that the result (11) of refs. 2 and 3 satisfies
the rotation relation (79). The relation (42) implies

GRp(;)=&e2;Gp(;)+2e ; (92)
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Using this identity and (11), and noting that JRp=1�Jp , we find

&4Rp, q&4pq=&{ log Jq+P |
�

&�
e&;+2;(uq&up)�?Xq(;) (93)

the function Gp(;) having cancelled out of the integrand. The RHS of this
result is the same as that of (89), while from (77) the LHS is 4q, Rp&4pq :
(79) is therefore satisfied.

10. SUMMARY

We have obtained the explicit expressions (21)�(25) for xp , yp . We
have shown that they satisfy the differential relations (29), and that they
agree with previous results (corrected where necessary) for the low-tem-
perature case k � 1, for the critical case k � 0, and for the Ising case N=2.

In Section 9 we have also explicitly shown that the free energy satisfies
the inversion and rotation relations. For other models that enjoy the
``rapidity difference'' property, there is a uniformizing substitution that
makes it easy to derive the free energy from these relations and a simple
analyticity assumption. We do not know how to do this for the chiral Potts
model, nor do we know how to solve similar relations for the generalized
spontaneous magnetization.(10�12) The presentation in Section 9 may cast
some light on this outstanding problem.
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